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Outline

▪ Hour 1 
• Brief review of PCA 
• Unsupervised learning: clustering 

▪ Hour 2: back to supervised learning 
• Decision-trees  
▪ For regression 
▪ For classification
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PCA - example
▪ Dataset: consider an unlabelled normalised data set containing N sample points and d features.

• How many eigenvalues would the data covariance matrix have? 

• Suppose we perform PCA and find approximate the data based on its 3 principal components. Let  
  be the associated eigenvectors. What is the projection of a given data point     

on the space spanned by these eigenvectors? 
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Clustering 



k-means
Example

▪ Palmer Penguins dataset

▪ Features: Flipper length and Bill length 

▪ Can we identify k species based on this data? 



k-means
Example
▪ Note that when we apply clustering, we don’t have the labels. Our goal is to be 

able to best way to cluster the data (a bit vague but we will formalise one way to 
do this)



k-means approach to clustering
How to cluster data without labels?

k-means: Group points based on their proximity 

(in terms of distance in the feature space)

Try to find similarity between groups of points

▪ Given a set of unlabelled input samples, group the samples into  clusters ( )

▪ k-Means idea:  

• Identify k cluster of data points given  samples. 
• Find prototype points  representing the center of each cluster 

and add the data points to the nearest cluster 

k k ∈ ℕ

N
μ1, μ2, . . . , μk ∈ ℝd



k-means
Preliminaries

▪ A single representative point for data: 


▪ Example: suppose we want to have one representative point 

• we use a mean-squared


• we use an absolute value loss
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k-Means

▪ Choose k clusters to represent data


▪ Determining the cluster a single point … belongs to


▪ Determining the cluster centres to minimize the distance of each point to its 
assigned cluster
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k-Means heuristic algorithm
Algorithm - 

1.  Initialize  (e.g., randomly) 

2.  While not converged


1.  Assign each point ….   to the nearest center

2.  Update each center  based on the points assigned to it

{μ1, μ2, . . . , μk}

μj

▪ Step 2.1: For each point …, compute the Euclidean distance to every center 



• Find the smallest distance 

• The point is said to be assigned to the corresponding cluster (note that each 

point is assigned to a single cluster)

▪ Step 2.2:  

• Recompute each center  as the mean of the points that were assigned to it

{μ1, μ2, . . . , μk}

μj
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k-means
Algorithm - Convergence
▪ Step 2 is repeated while k-means has not converged


• What criteria to stop iterating?

• Fixed number of iterations? It’s arbitrary and a too small number can lead to 

bad results

• The difference in assignments or center locations between two iterations can 

be used as criteria to stop the algorithm


▪ k-means does not always converge to the best solution

• Non-convex optimization problem



k-means
Example
▪ Use the Palmer Penguins dataset

▪ With Flipper length against Bill length

With label Without label



k-means
Example
▪ Center initialisation

3 means (k = 3)
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k-Means
Example
▪ First iteration
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k-Means
Example
▪ 2nd iteration

u'(2)

>
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k-Means
Example
▪ 3rd iteration



k-Means
Example
▪ Last iteration
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Summary - Clustering
Used for understanding data 

Examples:  
Topic discovery in a large set of documents  
Recommendation engines

Guessing missing entries

k-means: an approach to clustering 

Easy to implement and to interpret 
k-means algorithm usually converges, but possibly to local minima 



Brief recap - data statistics
Empirical distribution
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Brief recap - data statistics
Variance, covariance, correlation
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Decision Trees
Introduction

What’s a decision tree?

Student attends lecture

True

Student gets high grade

False

Student gets average grade

Split data based on the answer to a series of Yes/No questions

: an approach to supervised learning
Ixi ,yin

,

E



Decision Trees
Terminology

Root Node

Internal Node

Internal Node Internal Node

Internal Node

Leaf Node

Leaf Node

Leaf Node Leaf Node Leaf Node

Leaf Node

▪ Nodes are checked on a single feature
▪ Branches are feature values
▪ Leaves indicate prediction of the tree



Regression tree
▪ Example: how to predict the label of an unseen point based on the data? 
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Loss function
▪ Suppose this is our prediction model. What would be the mean-square loss?  

Let ind1 and ind2 denote the set of indices of data points 
in the top and the bottom regions, respectively

Loss : mean-square error
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Regression tree example

Let ind2 ind3 denote the set of indices of data points in 
the left and right region, and ind1, as before, denote the 
set of indices of data points in the top region

Loss : [
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Regression tree
Loss function

To construct the tree, we have to decide the depth of the tree. And at each node, we have to decide 
which feature to use for a split
what value of the feature to use for the split
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Regression Tree
Optimising the loss function - greedy algorithm

The global loss function would tell us which features and what threshold values to use for the entire tree of a 
given depth. This function is non-convex and hard to optimize. 

We apply a greedy approach, where we start adding nodes based on optimizing the loss function at each node. 
Note that even the loss function at a given node is non-convex and we can only approximately find a solution
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Regression tree
Stopping criteria

At which depth should we stop growing the tree? 
If the number of data points at leaf nodes become too small, then we often stop
If the loss at a depth d1 is close to the loss at depth d2 = d1+1, then we often stop 

As the objective is non-convex and greedy approach gives us an approximate solution, it’s possible that 
the loss would decrease after a few iterations, even though in the next iteration it did not decrease



Called classification trees

Age Car type Risk
23 family high
17 sports high
43 sports high
68 family low
32 family low
20 family high

Continuous  
Feature

Categorical 
Feature

Class 
label Age < 27.5

High

High

Car type sports

Low

falsetrue

true false

Decision Trees for classification
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Performance metric and loss function
Classification trees

Given a classification tree, we can evaluate its performance by forming the confusion matrix
We can measure the accuracy, error rate, etc. 

However, finding the tree that minimises a given metric is a hard optimisation problem

To address this, we use an alternative measure of performance and use a greedy approach based on this 
measure 



Example - constructing the tree

Age Car type Risk
23 family high
17 sports high
43 sports high
68 family low
32 family low
20 family high

Continuous  
Feature

Categorical 
Feature

Class 
label

Classification Trees

Let’s consider a tree of depth 2. We have to address

Which feature to use at each depth to do a split? 

For the continuous feature, at what value to do a split? 

For the categorical feature, which category to use for the split? 



Classification trees
Greedy approach: choose a feature and the split sequentially based on minimising a 
performance metric, for example, the Gini impurity of a node

Gini impurity of a leaf node: based on empirical probability of class 

Gini impurity of a node
Weighted sum of the gini impurity of the two leaf nodes associated with the node

Note: Criteria other than gini index (such as entropy) are also used for node split 
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Example - constructing the tree

Age Car type Risk
23 family high
17 sports high
43 sports high
68 family low
32 family low
20 family high

Continuous  
Feature

Categorical 
Feature

Class 
label

Classification Trees

We will apply Gini impurity to construct the classification tree



Criteria for choosing a feature and a split

Age Car type Risk
23 family high
17 sports high
43 sports high
68 family low
32 family low
20 family high

Continuous  
Feature

Categorical 
Feature

Class 
label

Car type sports

Low

true false

Classification trees
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