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Outline

= Hour 1
- Brief review of PCA
 Unsupervised learning: clustering

= Hour 2: back to supervised learning
 Decision-trees
= For regression
= For classification
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PCA - example

, d
r'e R
. . - . - N
= Dataset: consider an unlabelled normalised data set containing N sample points and d features. { % {

N = el —
* How many eigenvalues would the data covariance matrix have? X & KK
C = XlX Q lR 4 C\ e‘%("\\/cx\(/\a/\ /\'\ G |R \ = \/2c “"c-C\

» Suppose we perform PCA and find approximate the data based on its 3 principal components. Let

® € R pe the associated eigenvectors. What is the projection of a given data point x' € R¢
on the space spanned by these eigenvectors?
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Clustering




=Prl k-means

Example

= Palmer Penguins dataset
= Features: Flipper length and Bill length
= Can we identify k species based on this data?
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k-means

Example

= Note that when we apply clustering, we don’t have the labels. Our goal is to be
able to best way to cluster the data (a bit vague but we will formalise one way to

do this)
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='* k-means approach to clustering

How to cluster data without labels?

Try to find similarity between groups of points

kK-means: Group points based on their proximity
(in terms of distance in the feature space)

= Given a set of unlabelled input samples, group the samples into k clusters (k € N)
= k-Means idea:

» |dentify k cluster of data points given /N samples.

- Find prototype points x 1, /42, e //tk e R representing the center of each cluster
and add the data points to the nearest cluster



=F*- k-means .

Preliminaries Letr (<3 C R b ow clak et

= A single representative point for data: oy o Cn c\ v e R e
VQR)Y??%EJ\)"S oL O\ opa

= Example: suppose we want to have one representative point N
) N " 2 A Z X‘
- weuseamean-squared(j[;qzl—\)—— S [ -l ta>s M Q0 = oacs S
(S0 AN '“

* We use an absolute value loss J SRR
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k-Means N
Approach { <.
\ 2 <« A ) KQC\

= Choose k clusters to represent data { oo, e AR \3 <  , A&

(tow o e gr\c\ { g %b )

=1 |
= Determining the cluster a single point:ﬁ. pbelongsto mm in (\ X _ M) l[ 2
):\,2/,.,( -

\

CcVvYy - c¢cluslker  x &\W\DQ _

Cciy = rpgmn | x!' (\i
j = (2~
= Determining the cluster centres to minimize the distance of each point to its

assigned cluster N | N \ \ ) \L
‘ C C ) > \ oo— A
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=PFL " Kk-Means heuristic algorithm  tox . non. conver g beurd

Algorithm -

1. Initialize {u', u?, ..., u*} (e.g., randomly)
2. While not converged

1. Assign each point Z.. to the nearest center [ see previous ! He )
: |
2. Update each center 1/ based on the points assigned to it ) . b E X
"‘A : W\v\(uz% o‘P ')Om\ﬂ Das%<7§%ec\ ug‘t j NJ ‘l
= Step 2.1: For each point x compute the Euclidean dlstance to every center

(utou?, .. 1"}
* Find the smallest distance

A k\ x.\ _ MJ \\L E’W QMC}\ Q\(_':L\'C,( YOV\\"}
. 2
J
» The point is said to be assigned to the corresponding cluster (note that each
point is assigned to a single cluster)

= Step 2.2:

- Recompute each center ,uj as the mean of the points that were assigned to it



=Pl k-means

Algorithm - Convergence

= Step 2 is repeated while k-means has not converged
- What criteria to stop iterating?
 Fixed number of iterations? It’s arbitrary and a too small number can lead to
bad results
 The difference in assignments or center locations between two iterations can
be used as criteria to stop the algorithm

= k-means does not always converge to the best solution
» Non-convex optimization problem
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3
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K-means
Example

= Use the Palmer Penguins dataset
= With Flipper length against Bill length
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K-means
Example

= Center initialisation
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k-Means
Example

= First iteration
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k-Means
Example

= 2nd iteration
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k-Means
Example

= 3rd iteration
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=PrL Kk-Means

Example

= |ast iteration
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=PFL _
Summary - Clustering

Used for understanding data

Examples:
Topic discovery in a large set of documents

Recommendation engines
Guessing missing entries

K-means: an approach to clustering

Easy to implement and to interpret
kK-means algorithm usually converges, but possibly to local minima
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Brief recap - data statistics
Empirical distribution

{ hlove ¢ b)Y, %e\\chU\,CZYr&cr\C*a\,mc\ Cr))5
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=PFL o

Brief recap - data statistics 1-'{_ - *'¢®
Variance, covariance, correlation
N : |
MJ = ——l—— E )(,k " EW\KJIV\CCLB NC otin 2 ‘Eeo(”‘l)v& J
N 1= )
C N | N ( | ) J g
o\ (X X - _‘___ Z x ' . >§ . A)\‘/ : E Y\\ADIv: C COVRY « BN
D A e T M e
COVCX5/ Xj \ = C)\),L . &m()lr\rogb VLY (Conlg ch CQD\LM,Q ) )
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Decision Trees : «- < pprooich o Sd\oe//\/\sch /cam@
Introduction sy %N

What's a decision tree?

Student attends lecture

True False

Student gets high grade Student gets average grade

Split data based on the answer to a series of Yes/No questions



=Pl Decision Trees

Terminology
= Nodes are checked on a single feature —/ \
Internal Node

Internal Node

= Branches are feature values

Internal Node Leaf Node Internal Node Leaf Node
Leaf Node Leaf Node Leaf Node Leaf Node

= |Leaves indicate prediction of the tree
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Regression tree
. . ‘
= Example: how to predict the label of an unseen point based on the data? 08 1 °
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=Pl Loss function

= Suppose this is our prediction model. What would be the mean-square loss?

Let ind1 and ind2 denote the set of indices of data points
in the top and the bottom regions, respectively
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=P Regression tree example

Let ind2 Ind3 denote the set of indices of data points in
the left and right region, and ind1, as before, denote the

set of indices of data points in the top region yﬁ{ JE
X9 >(.505

Loss 7\}{— [ | | 020 L
E ( j‘f- I«C(€8>Z o 5 = 1968 )ﬁ[x1>0.@ no 041 "o .

| € tag , 02+ $=0098 o
Z ‘ 502767 > =098 0 . 2

= ( J° - (0 O((ZB + ——— —— 0 02 /04 0.6 08 I
(& Inc 5 1

> (3 -02767) D-36



=F*L " Regression tree

Loss function

To construct the tree, we have to decide the depth of the tree. And at each node, we have to decide
which feature to use for a split

what value of the feature to use for the split

{—_O OPJ’]MI-'—C_Q (@ Vs 4 -)r Q " (R non - CcoNve



=Pl Regression Tree

Optimising the loss function - greedy algorithm

The global loss function would tell us which features and what threshold values to use for the entire tree of a
given depth. This function is non-convex and hard to optimize.

We apply a greedy approach, where we start adding nodes based on optimizing the loss function at each node.
Note that even the loss function at a given node is hon-convex and we can only approximately find a solution

€ )(O\N\\)‘f oA J’V‘@e éE G — — -\
t\ﬁ @A"\/\ ék CGL«L\A \l

WQS¢X} L \ K3




=Pl Regression tree

Stopping criteria

At which depth should we stop growing the tree?
If the number of data points at leaf nodes become too small, then we often stop
If the loss at a depth d1 is close to the loss at depth d2 = d1+1, then we often stop
As the objective is non-convex and greedy approach gives us an approximate solution, it’s possible that
the loss would decrease after a few iterations, even though in the next iteration it did not decrease



cPrL PDecision Trees for classification

Called classification trees
N\

< X\,J“g.‘;\ U € < L\‘Q\)\«r/Qowg /\Slg

NC= € et sese N cer e

Continuous Categorical Class

Feature Feature label
Age Car type Risk
23 family high true false

43 sports high
68 family low true /\ false
20 ey | g e ]

20 family high




=PrL Classification trees
Performance metric and loss function

Given a classification tree, we can evaluate its performance by forming the confusion matrix
We can measure the accuracy, error rate, etc.

However, finding the tree that minimises a given metric is a hard optimisation problem

To address this, we use an alternative measure of performance and use a greedy approach based on this
measure
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Example - constructing the tree
Let’s consider a tree of depth 2. We have to address

Which feature to use at each depth to do a split?

Continuous Categorical Class
For the continuous feature, at what value to do a split? Feature Feature label
Age Car type Risk
For the categorical feature, which category to use for the split? 273 family high
17 sports high
43 sports high
68 family low
32 family low
20 family high




=PrL Classification trees

Greedy approach: choose a feature and the split sequentially based on minimising a
performance metric, for example, the Gini impurity of a node

Gini impurity of a leaf node: based on empirical probability of class K. ¢ Vecsse o
K \<
9 - Z 2 Pp,. = = Py (-5
Q = QI;L- 9\ ) Q p - /O\\

|<—~3/P

0 PVQ\D- es‘D' c lexss Q \ < = 2

L ——

0 0 (Pe,rpey)+ (P 4 PR+ ((ge&PP)

Gini impurity of a node
Weighted sum of the gini impurity of the two leaf nodes assocnated with the node

?j h P\\‘)z* Fz?( - 2\3”92

Note: Criteria other than gini index (such as entropy) are also used for node split
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Example - constructing the tree
We will apply Gini impurity to construct the classification tree

Continuous Categorical Class
Feature Feature label
Age Car type Risk
23 family nigh

17 sports nigh

43 sports nigh

63 family low

32 family low

20 family high




=PrL Classification trees

Criteria for choosing a feature and a spilit

Continuous Categorical Class
Feature Feature label
Age Car type Risk
23 family high
17 sports high
43 sports high
68 family low
32 family low
20 family high




